Product safe harbor statement

This information is provided to outline Databricks' general product direction and is for informational purposes only. Customers who purchase Databricks services should make their purchase decisions relying solely upon services, features, and functions that are currently available. Unreleased features or functionality described in forward-looking statements are subject to change at Databricks discretion and may not be delivered as planned or at all

Deep Dive into Delta Lake and UniForm

Sirui Sun, Sunitha Beeram June 2024

Who Are We?

Michelle Leon

- Staff Product Manager
 - Previously Webflow, Airbnb
- Based in San Francisco
- Talk to me about
 - Delta Lake: incl transactions, coordinated commits, Delta Kernel
 - Unity Catalog interoperability
 - Best burritos in the Mission neighborhood 🔦

Who Are We?

Joe Widen

- Principal Solutions Architect
 - Joined Databricks in 2017, previously at Hortonworks, Capital One
- Proud owner of the smallest contribution to Delta Lake
 - You can find it in Delta Lake 1.0.0
- Focused on
 - Helping clients push the limits of Delta Lake
 - Helping clients adopt the latest Delta Lake features

Agenda

- 1. Intro to Delta Lake and core capabilities
- 2. Unpacking the Transaction Log Protocol
- 3. Data Layout Innovations
- 4. Uniform
- 5. Use cases
- 6. Roadmap

Tech Check

Cats or Dogs?

Delta Lake

Delta Lake with UniForm is an open format that brings performance, interoperability, and ACID transactions to open data lakes.

Delta Lake Key Features

ACID Transactions

Protect your data with serializability, the strongest level of isolation.

Unified Batch/Streaming

Exactly once semantics ingestion to backfill to interactive queries

Scalable Metadata

Handle petabyte-scale tables with billions of partitions and files at ease

Schema Evolution / Enforcement

Prevent bad data from causing data corruption

Time Travel

Access/revert to earlier versions of data for audits, rollbacks, or reproduce

Audit History

Delta Lake log all change details providing a full audit trail

DML Operations

SQL, Scala/Java and Python APIs to merge, update and delete datasets

Open Source

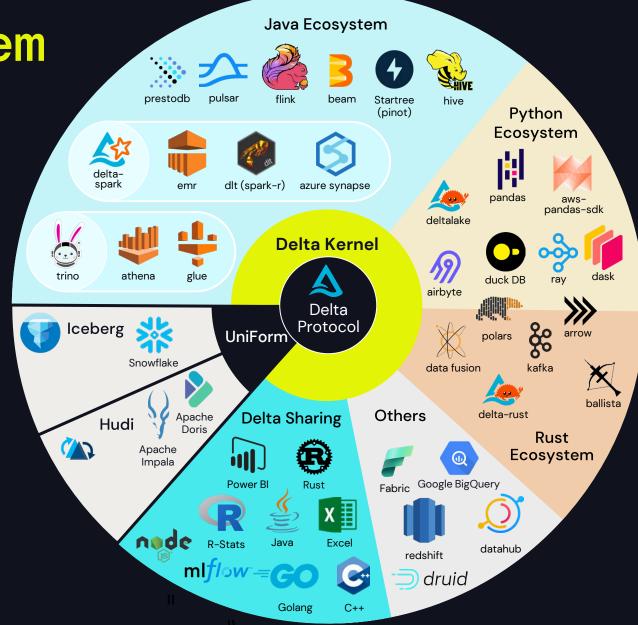
Community driven, open standards, open protocol, open discussions

Delta Lake - quickstart

```
bin/spark-sql
    --packages io.delta:delta-spark_2.12:3.1.0
    --conf "spark.sql.extensions=io.delta.sql.DeltaSparkSessionExtension"
    --conf "spark.sql.catalog.spark_catalog=org.apache.spark.sql.delta.catalog.DeltaCatalog"
```

```
CREATE TABLE cat.sch.tbl` USING DELTA
AS SELECT col1 as id
FROM VALUES 0,1,2,3,4;
```

Thriving ecosystem



Thriving ecosystem

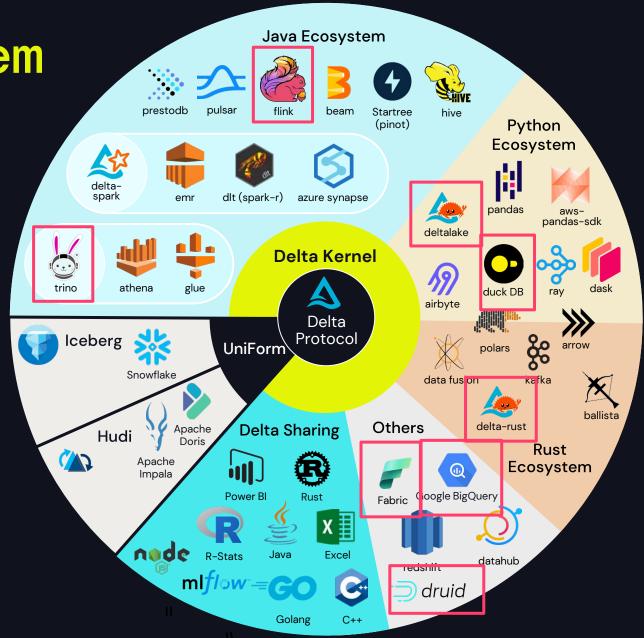
New or significantly updated

Delta Flink

Delta Trino

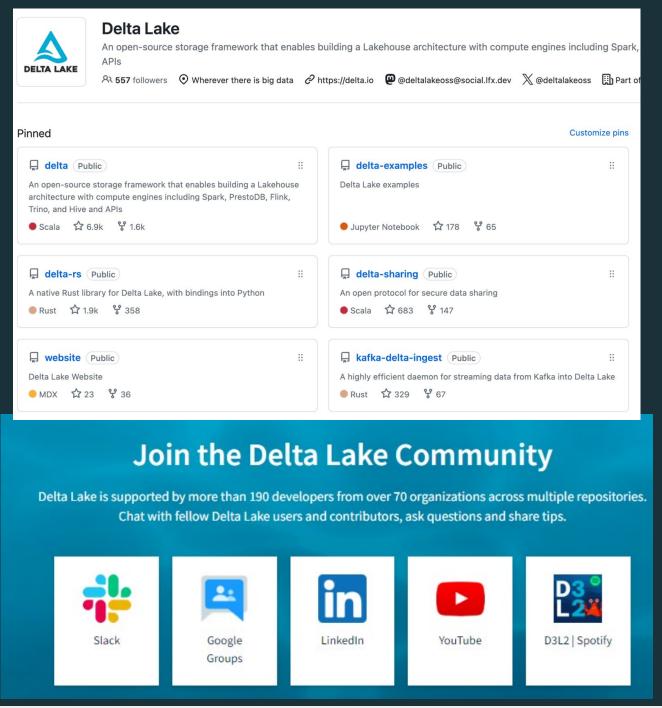
Delta Rust / deltalake Python

- Apache Druid
- Google BigQuery
- DuckDB



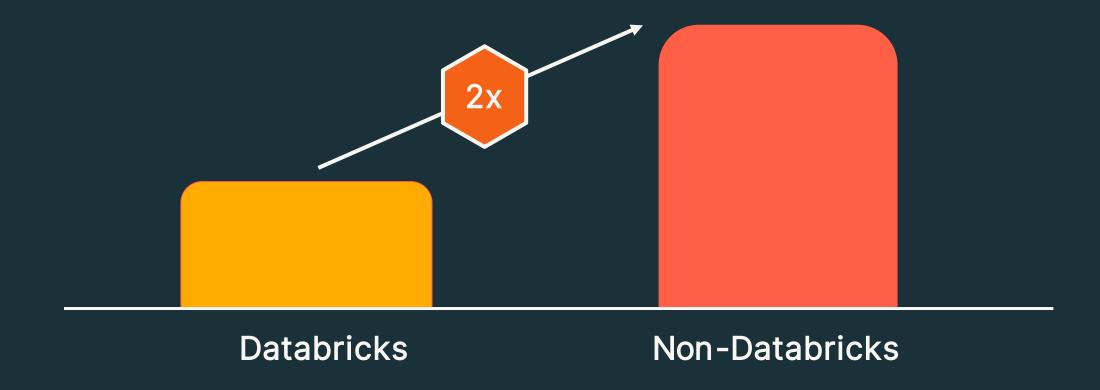
Community

- 11+ repos in the project
 - production and incubator projects
- > 50 releases
 - Latest: Delta 3.2, Delta Rust 0.17
- Very active community
 - ~9K Github stars
 - ~500 contributors
 - Slack: ~10K members
 - LinkedIn: ~50K members
 - YouTube: ~2.5K subscribers



Delta Lake - Pull Requests Merged

Source: Linux Foundation Insights



Delta Lake: The most adopted open lakehouse format

Scalable Popular Reliable Innovative Prevalent Open **80+** >500 >10K+ 9+ exabytes 1B+ 60%+ New Clusters per processed Fortune 500 Companies features / per day Adoption in production year Contributors year 2x yearly growth

The biggest Delta Lake release yet

Delta 3.0

Delta 4.0

Deletion Vectors

Liquid clustering

Delta Kernel

Writes

Optimized

Table features

Incremental checkpoints

Log compactions

Row IDs

VARIANT

Lightning fast

semi-structured

data

Spark Connect

Better stability, upgradability

UniForm GA

Write once, read as

all formats

Collations

Flexible sort and

Liquid GA

Easy migration from partitioned tables

Coordinated Commits

Cross cloud, cross engines

comparison

Identity columns

Pain-free primary and foreign keys

widening

Data types expand with your data

 $| \otimes_{}^{\downarrow} |$

MERGE

improvements

CDF

POP QUIZ

Unpacking the transaction log

Delta Lake on Disk

```
/mytable/
      _delta_log/
             00010.checkpoint.parquet
             00011.json
             00012.json
             _last_checkpoint
      _change_data/
             cdc-file1.snappy.parquet
      date=2024-06-14/
             file-1.snappy.parquet
      deletion_vector1.bin
```


Delta Lake on Disk

	/mytable/
Transaction Log	delta_log/
Commits & Checkpoints	00010.checkpoint.parquet
	00011.json
	00012.json
Checkpoint pointer	last checkpoint
(Optional) Change Data	_change_data/
	<pre>cdc-file1.snappy.pa rquet</pre>
(Optional) Partition Directories	date=2024-06-14/
Data	file-1.snappy.parquet
(Optional) Deletion Vectors	deletion_vector1.bin

Table = result of a set of actions

Metadata – name, schema, partitioning, etc

Add File – adds a file (with optional statistics)

Remove File – removes a file

Transaction Identifier – records an idempotent transaction id

Protocol Evolution – upgrades the version of the txn protocol

Commit Provenance – additional information about what higher-level operations was being performed as well as who executed it

Result: Current Metadata, List of Files, List of Txns, Version

Example of an addFile action

The add action is used to modify the data in the table by adding individual files respectively.

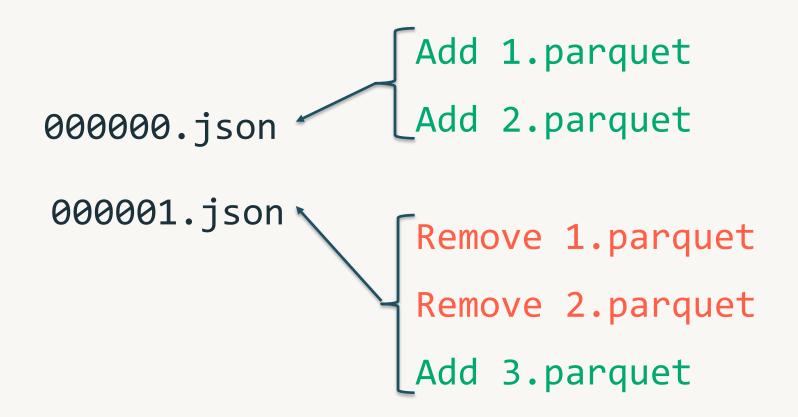
Path, partitionValues, size, modificationTime and dataChange are required fields. Other fields like stats, tags, and clusteringProvider are optional.

```
"add": {
  "path": "date=2017-12-10/part-000...c000.gz.parquet",
  "partitionValues": {"date": "2017-12-10"},
  "size": 841454,
  "modificationTime": 1512909768000,
  "dataChange": true,
  "baseRowId": 4071,
  "defaultRowCommitVersion": 41,
  "stats": "{\"numRecords\":1,\"minValues\":{\"val..."
```

ACID properties

Implementing Atomicity

Changes to the table are stored as ordered, atomic units called **commits**



Ensuring Serializability

Need to agree on the order of changes, even when there are multiple writers.



Solving Conflicts Optimistically

- 1. Record Start Version
- 2. Record reads/writes
- 3. Attempt commit
- 4. If someone else wins, check if anything you read has changed
- 5. Try again

Transactions and reliability are great, but what about performance?

Handling Massive Metadata

Large tables can have millions of files. Delta Lake can use a distributed engine for scaling

Add 1.parquet

Add 2.parquet

Remove 1.parquet

Remove 2.parquet

Add 3.parquet

Updating Delta Lake's State

000000.json

000001.json

000002.json

000003.json

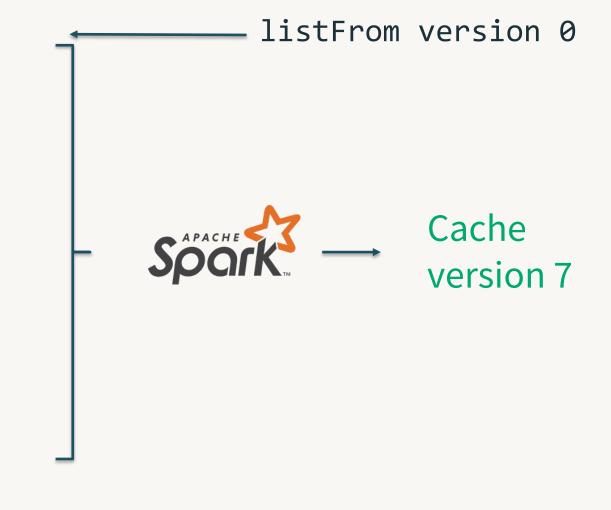
000004.json

000005.json

000005.json

000006.json

000007.json



Updating Delta Lake's State

000000.json . . . listFrom version 7 000007.json 000008.json 000009.json 0000010.json Read the checkpoint 0000010.checkpoint.parquet Cache 0000011.json version 12 0000012.json

Finding the latest metadata

The Delta transaction log can contain many (e.g. 10,000+) commits and this can take a long time to list

_last_checkpoint provides a pointer to near the end of the log

listFrom storage API provides the ability to list only from the last known checkpoint

```
/mytable/
      _delta_log/
             0000.json
             0001.json
             0002.json
      0100.checkpoint.parquet
             0101.json
      0200.checkpoint.parquet
             0201.json
             last checkpoint
```

Time Travel

Time Traveling by version

deltaLog.getSnapshotAt(500)

Time Traveling by timestamp

```
SELECT * FROM my_table TIMESTAMP AS OF '2019-10-16';

SELECT * FROM my_table@20191016000000000 -- yyyyMMddHHmmssSSS

spark.read.option("timestampAsOf", "2019-10-16").load("/some/path")

spark.read.load("/some/path@20191016000000000")
```


deltaLog.getSnapshotAt(500)

Time Traveling by timestamp

Commit timestamps come from storage system modification timestamps

	001070.	ison	201	19-	10	-16	5
--	---------	------	-----	-----	----	-----	---

Time Traveling by timestamp

Timestamps can be out of order. We adjust by adding 1 millisecond to the previous commit's timestamp

001	070	. i	son
	0 2 0		

00:00:00.01

Time Traveling by timestamp

Price is right rules - pick the closest commit timestamp that doesn't exceed the users timestamp

001070.json	2019-06-19
001071.json	2021-05-24
001072.json	2022-07-20
001073.json	2022-07-20 00:00:00.01

The Single Source of Truth!

Information required to plan a query

Information	Parquet Source	Delta Lake Source
1. Schema	 HMS or inferred from file footer 	1. Transaction Log
Partition Columns and values	2. HMS or inferred	2. Transaction Log
3. Files to read4. File Statistics5. Protocol (Delta Only)	3. FileSystem listing4. NA5. NA	3. Transaction Log4. Transaction Log5. Transaction Log

Getting the schema of a Delta Lake table

Read the transaction log!

Collect all the metadata actions for your table

Merge the schema strings together

Time Travel allows you to go back before meta changes!

```
"metaData":{
  "id": "af23c9d7-fff1-4a5a-a2c8-55c59bd782aa",
  "format":{"provider":"parquet", "options":{}},
  "schemaString":"...",
  "partitionColumns":[],
  "configuration":{
    "appendOnly": "true"
```

Getting the partition columns

Read the transaction log!

Collect all the metadata actions for your table

Collect list of partition columns

Scales to millions of partitions

```
"metaData":{
  "id": "af23c9d7-fff1-4a5a-a2c8-55c59bd782aa",
  "format":{"provider":"parquet", "options":{}},
  "schemaString":"...",
  "partitionColumns":[],
  "configuration":{
    "appendOnly": "true"
```

Getting the list of files to read

Read the transaction log!

Collect all the add file actions

Apply partition and data filters

Collect list of paths

Scales to millions of files

```
"add": {
 "path": "date=2017-12-10/part-000...c000.gz.parquet",
  "partitionValues": {"date": "2017-12-10"},
  "size": 841454,
  "modificationTime": 1512909768000,
  "dataChange": true,
  "stats": "{\"numRecords\":1,\"minValues\":{\"val..."
```

Additional Features

Generated Columns

A generated column is a special column that's defined with a SQL Expression

```
CREATE TABLE events (
  eventId BIGINT,
  data STRING,
  eventType STRING,
  eventTime TIMESTAMP,
  eventDate date GENERATED ALWAYS AS (CAST (eventTime AS
  DATE))
 PARTITIONED BY (eventType, eventDate)
```


Generated Columns

Querying a generated column will apply partition pushdown if you use the generated column, or the column it was generated from

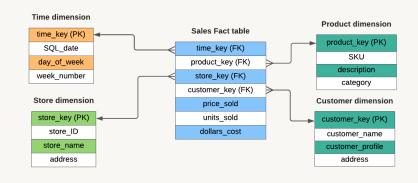
```
SELECT * From events WHERE eventTime >= "2020-10-01 00:00:00" <= "2020-10-01 12:00:00"
```

For the above query, we will only read the date 2020–10–01 even though the partition filter is not specified

Support for Identity Columns, Primary + Foreign Key Constraints

IDENTITY COLUMNS

- Define **IDENTITY** column on a table
- Delta can automatically generate unique integer values when new rows are added to the table with IDENTITY columns
- Users can also explicitly insert values for the IDENTITY columns



PRIMARY + FOREIGN KEY DECLARATIONS

- Declare unenforced Primary and Foreign keys with ALTER TABLE
- Visible in
 INFORMATION_SCHEMA and
 DESCRIBE TABLE
- Allow end users to understand relationships between tables

GOAL: Enable **data quality** and **easy** table **relationship discovery** for tools and users that are not familiar with the data model.

Identity Columns

Delta Lake Identity Support

```
CREATE TABLE IF NOT EXISTS dim_loan
(
Loan_sk BIGINT GENERATED ALWAYS AS IDENTITY,
Loan_id BIGINT,
.......
)
USING DELTA
LOCATION 'abfs://<container>@<storage account>/'
```

Options

ALWAYS | BY DEFAULT START WITH start INCREMENT BY step

- Always option doesn't allow column override
- By Default option does allow column override but *doesn't enforce duplicates*
- Start With option allows you to start anywhere
- Increment option allows you to set the increment

POP QUIZ

Speeding up queries

Speeding up queries

Reading only the necessary rows for a query = Efficient query processing

How does the transaction log help with that?

Partitioned Tables: Partition Pruning

```
/mytable/

part=1/part_00001.parquet

part=1/part_00002.parquet

part=2/part_00001.parquet

part=2/part_00002.parquet
```

select * from mytable where part = 2

Data Skipping

Simple, well-known I/O pruning technique

- Track file-level stats like min & max
- Leverage them to avoid scanning irrelevant files

file_name	col_min	col_max
1.parquet	6	8
2.parquet	3	10
3.parquet	1	4

Data Skipping

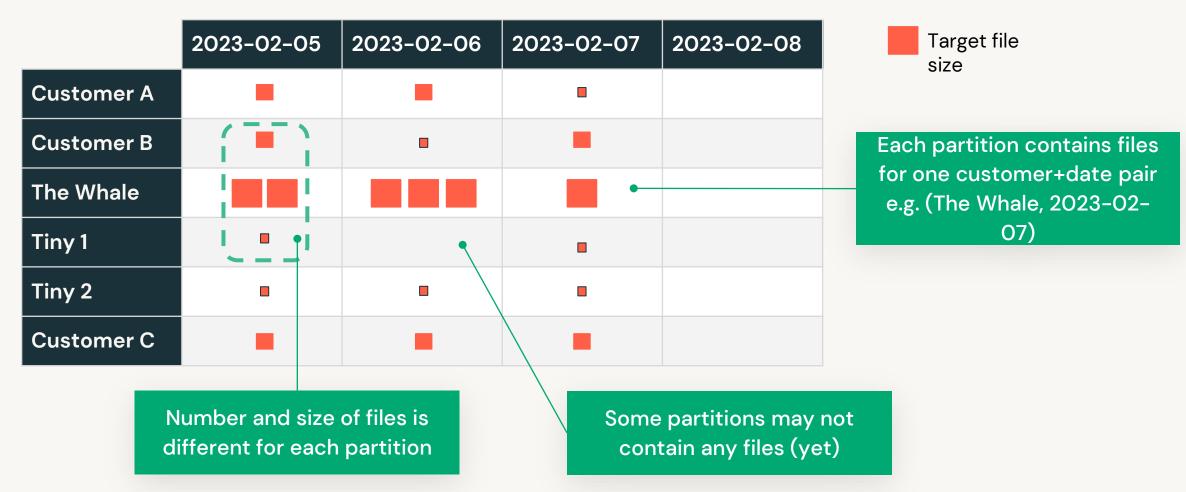
```
SELECT file_name FROM index
WHERE col_min < 5 AND col_max >= 5
```

file_name	col_min	col_max
1.parquet	6	8
2.parquet	3	10
3.parquet	1	4

Data Layout Challenges

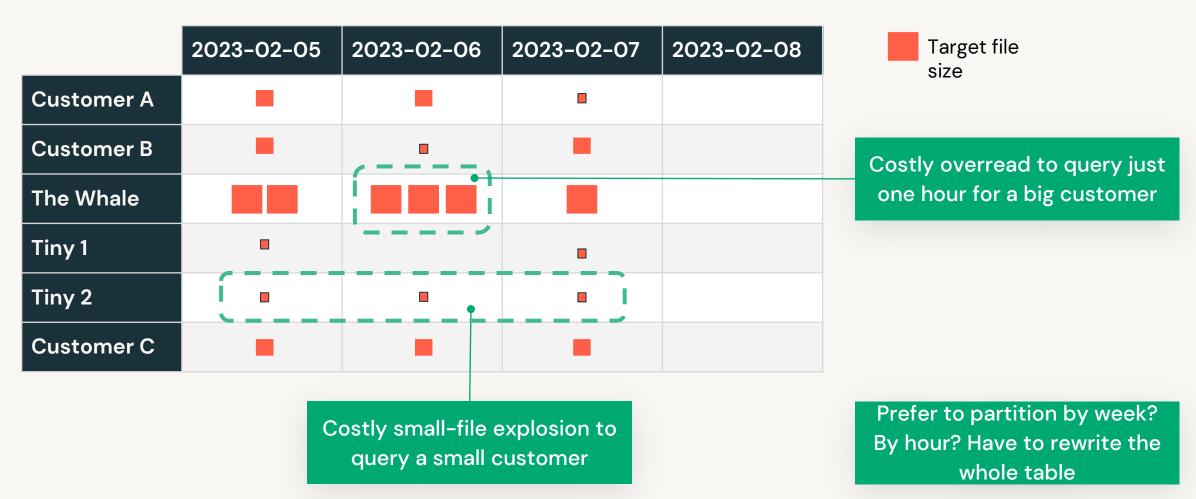
Hive-style partitioning

Working example: A table partitioned by customer ID and date



Hive-style partitioning

A table can be over- or under-partitioned — or both at the same time!



Hive-style partitioning

Most ingest is small, causing small-file explosion

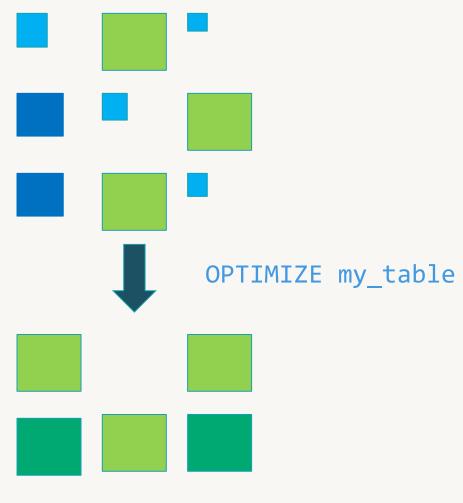
	2023-02-05	2023-02-06	2023-02-07	2023-02-08
Customer A	-			
Customer B	•			
The Whale				
Tiny 1	•			
Tiny 2	•	•		
Customer C	-			•••

Ingest new data every hour? 24 files per customer/day.

Ingest small data for many customers at once?
One tiny file per customer.

Frequent table maintenance needed to control file counts

OPTIMIZE your table



```
"remove": {
  "path": "part-00001-9....snappy.parquet",
  "deletionTimestamp": 1512909768000,
  "dataChange": false
"add": {
  "path": "part-0000.....gz.parquet",
 "size": 256841454,
  "modificationTime": 1512909768000,
  "dataChange": false,
  "stats":
      \"numRecords\":123456789,\"minValues\":{\"val..."
```

Z-Ordering

optimize my_table zorder by col

Old Layout

New Layout

file_name	col_min	col_max
1.parquet	6	8
2.parquet	3	10
3.parquet	1	4

file_name	col_min	col_max
1.parquet	1	3
2.parquet	4	7
3.parquet	8	10

Z-Ordering

select * from table where col = 7

Old Layout

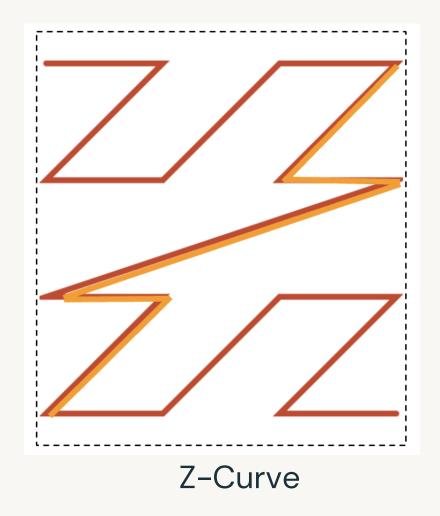
New Layout

file_name	col_min	col_max
1.parquet	6	8
2.parquet	3	10
3.parquet	1	4

file_name	col_min	col_max		
1.parquet	1	3		
2.parquet	4	7		
3.parquet	8	10		

Challenges with Z-order

- Due to the span of the Z-Curve, some files will have min/max range equal to the full range, and data skipping can't skip these files.
- Any new data ingested after the OPTIMIZE ZORDER BY run is **not automatically clustered**, and the user needs to rerun the command to cluster the new data.
- OPTIMIZE ZORDER BY reclusters already well-clustered data, resulting in **high write amplification**.
- ZORDER BY columns are not persisted and the user is required to remember the previous ZORDER BY columns, often causing user errors if different columns are used



Data Layout Innovations

Liquid Clustering - No more partitions

- Fast
 - Faster writes and similar reads vs. well-tuned partitioned tables
- Self-tuning
 - Avoids over- and under-partitioning
- Incremental
 - Automatic partial clustering of new data
- Skew-resistant
 - Produces consistent file sizes and low write amplification
- Flexible
 - Want to change the clustering columns? No problem!
- Better concurrency

Liquid clustering Usage Walkthrough

Create a new Delta table with liquid clustering CREATE [EXTERNAL] TABLE tbl (id INT, name STRING) CLUSTER BY(id)

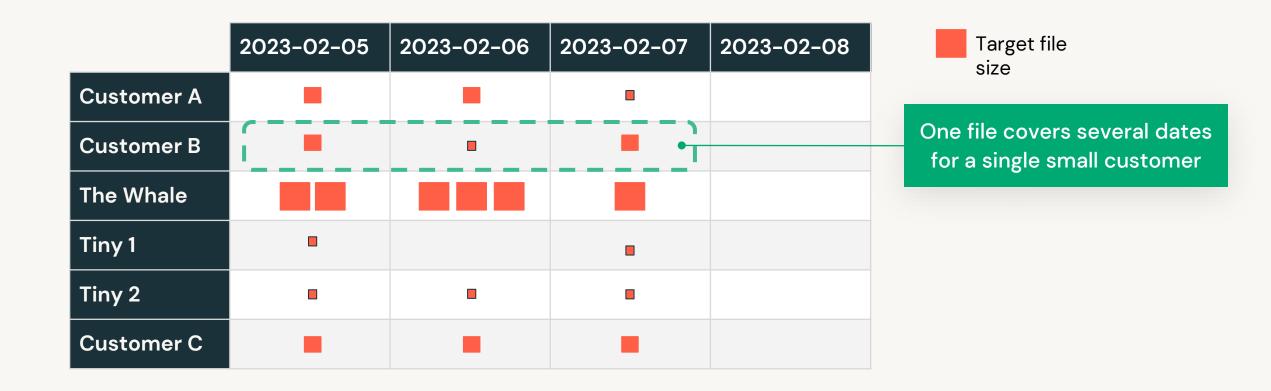
Change Liquid Clustering keys on existing clustered table: ALTER TABLE tbl CLUSTER BY (name);

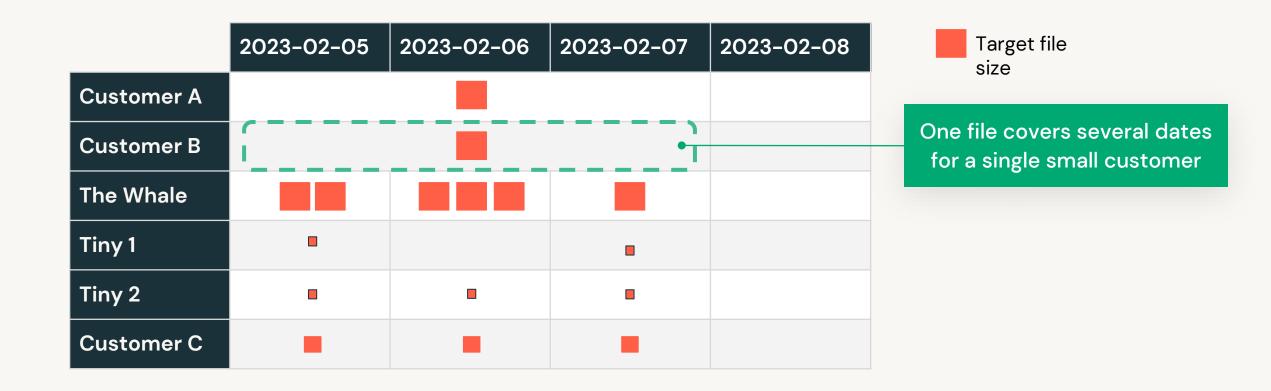
Clustering data in a Delta table with liquid clustering: OPTIMIZE tbl;

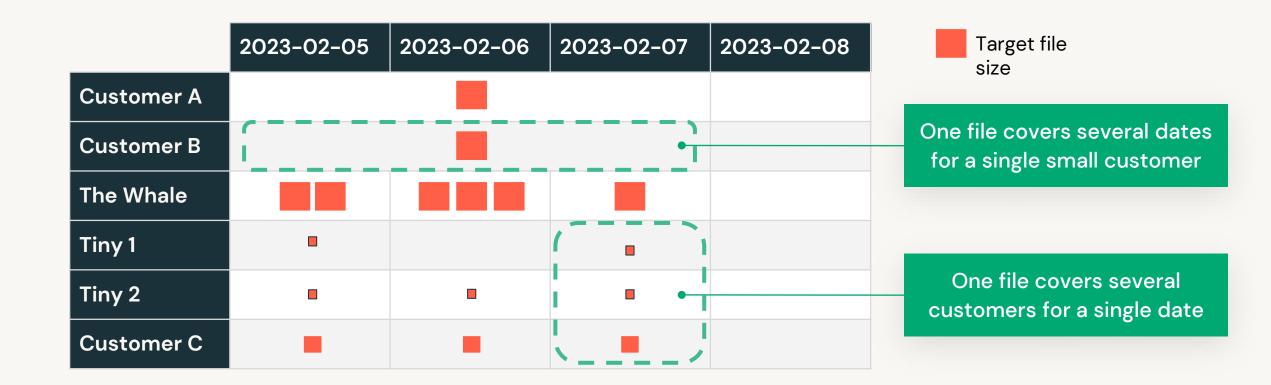
What you don't need to worry about:

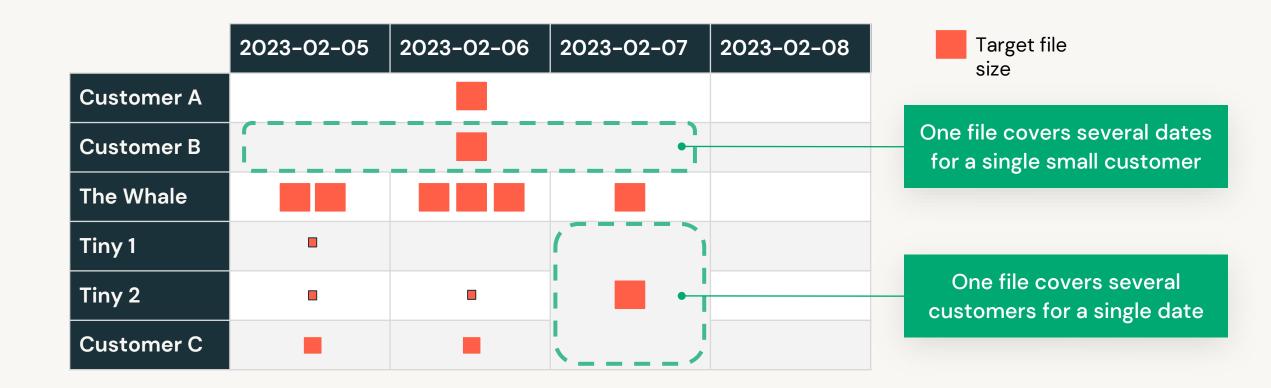
- Optimal file sizes
- Whether a column can be used as a clustering key
- Order of clustering keys

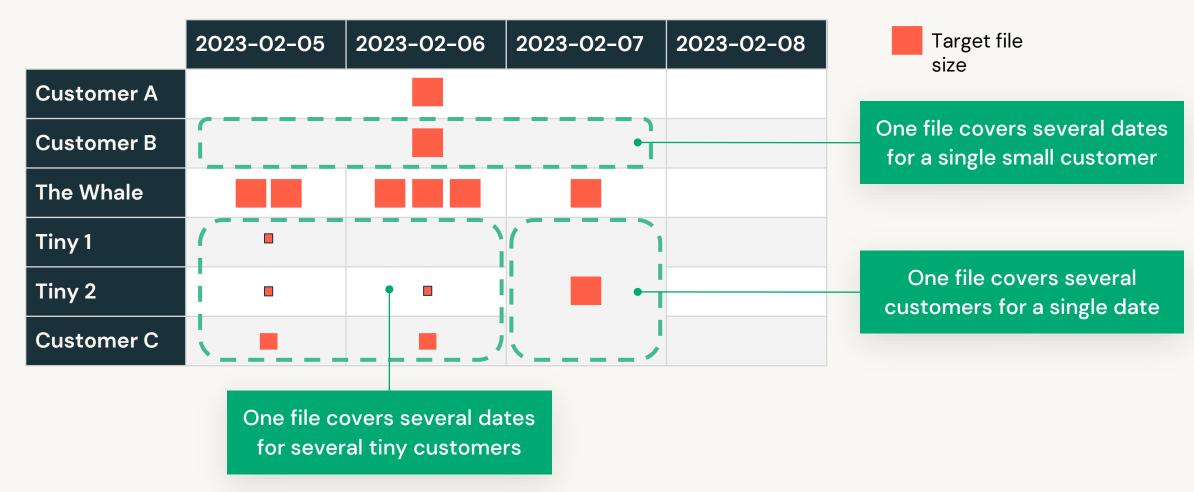
	2023-02-05	2023-02-06	2023-02-07	2023-02-08
Customer A	-			
Customer B	-			
The Whale				
Tiny 1	•			
Tiny 2	•	•		
Customer C	-			



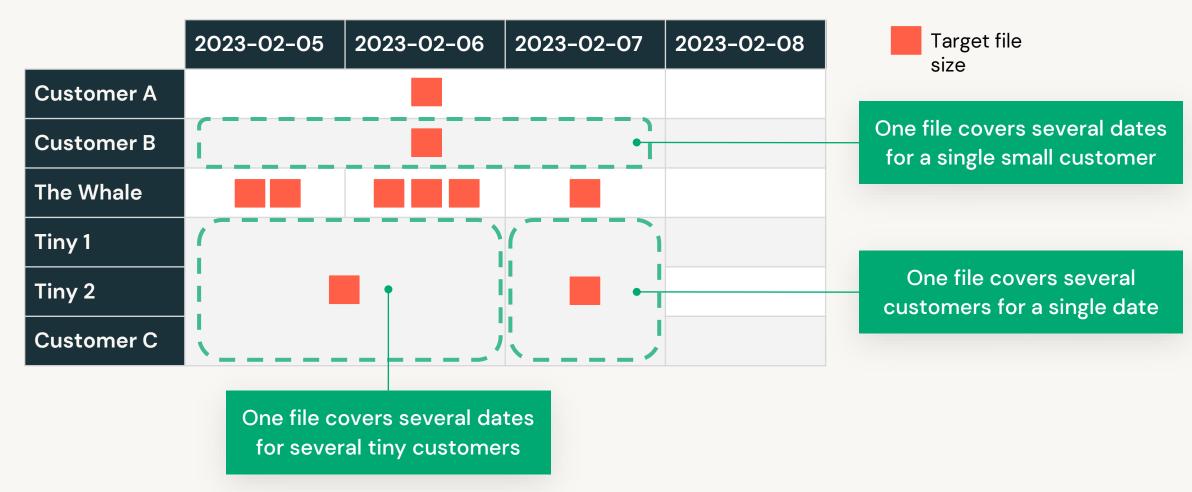




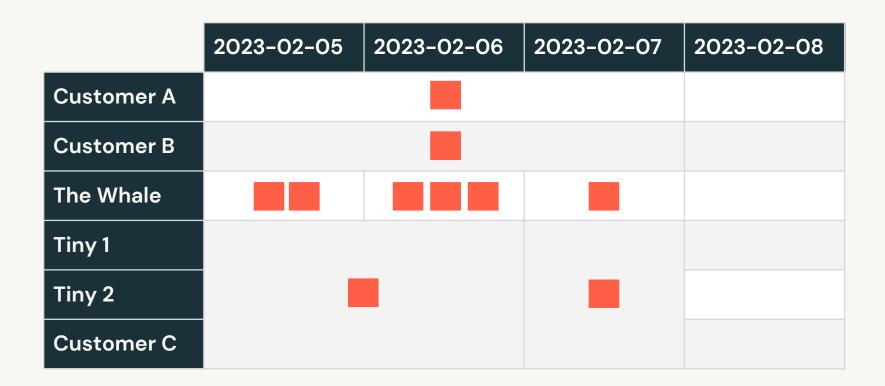




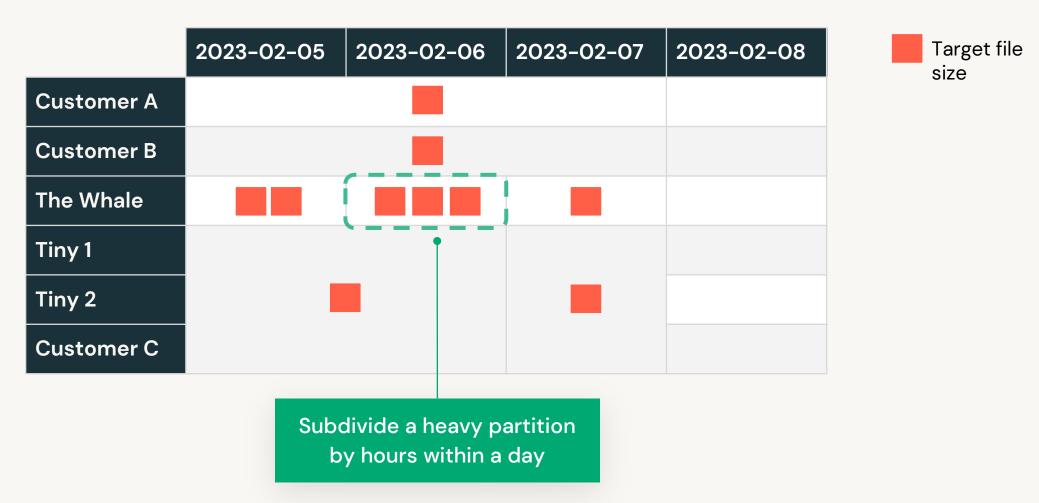
Efficiently balance clustering vs. file size



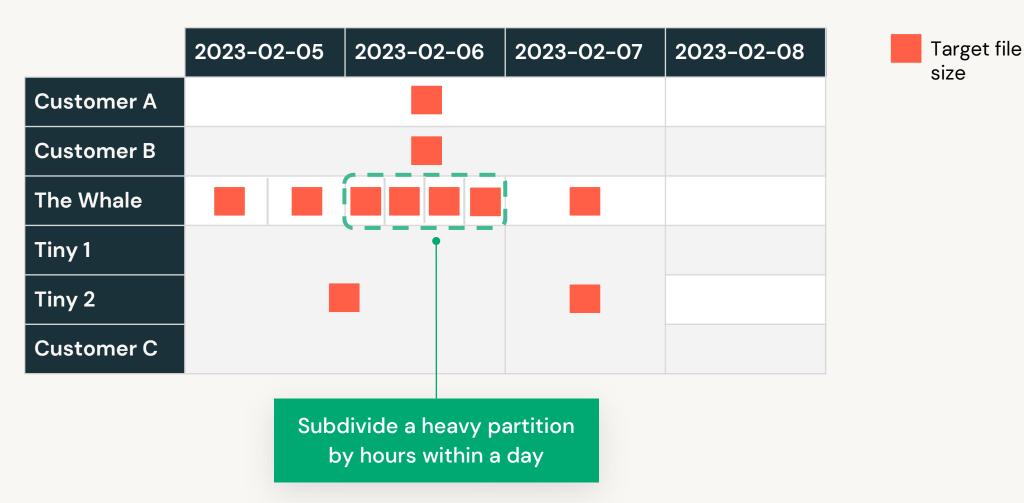
But wait, there's more!



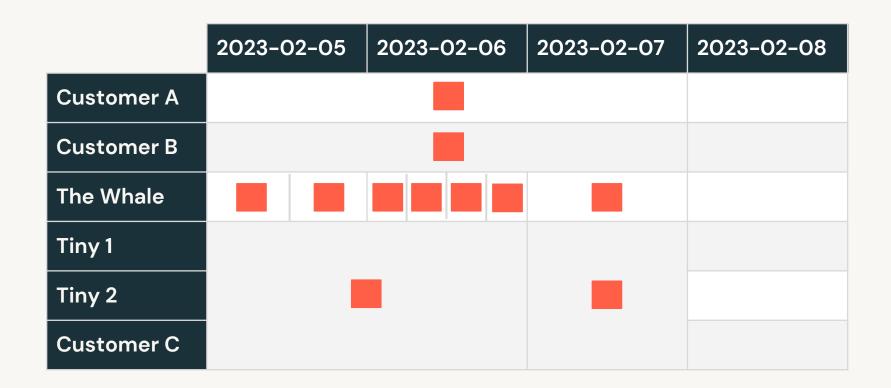
Automatically cluster heavy partitions more finely



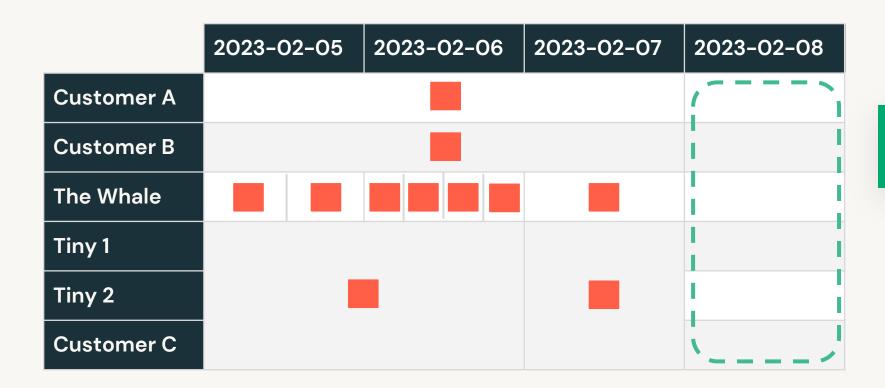
Automatically cluster heavy partitions more finely



But wait, there's more!

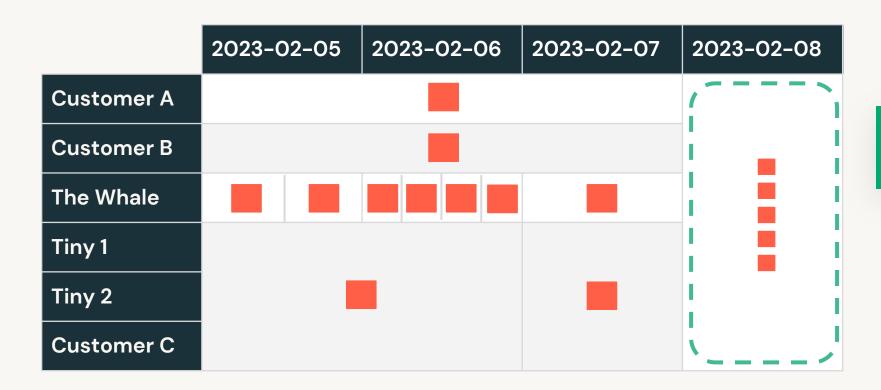


Efficient ingest with lazy/partial clustering



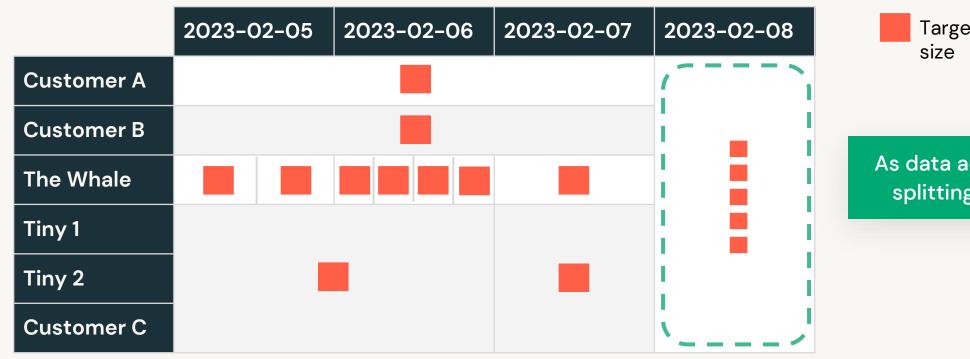
At first, one file per ingest, each covering all customers

Efficient ingest with lazy/partial clustering



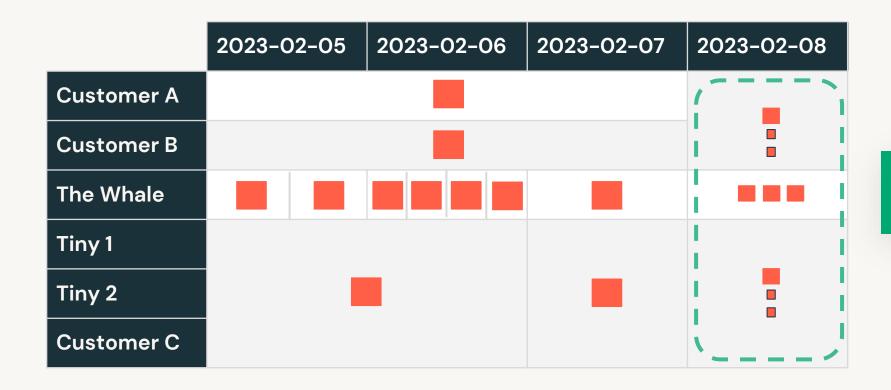
At first, one file per ingest, each covering all customers

Efficient ingest with lazy/partial clustering



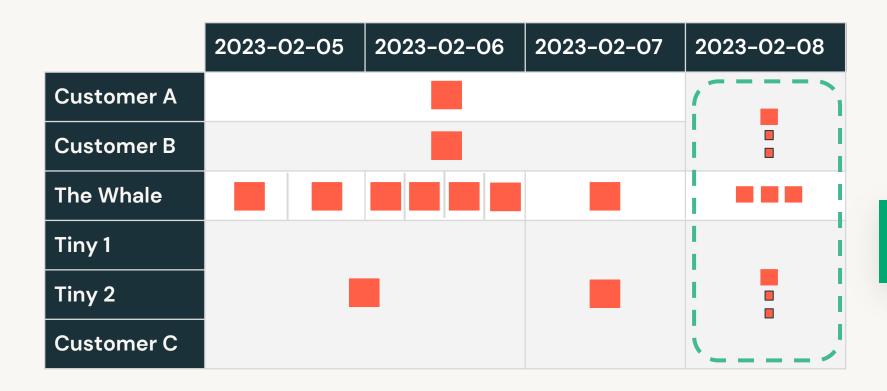
As data accumulates, start splitting out customers

Efficient ingest with lazy/partial clustering



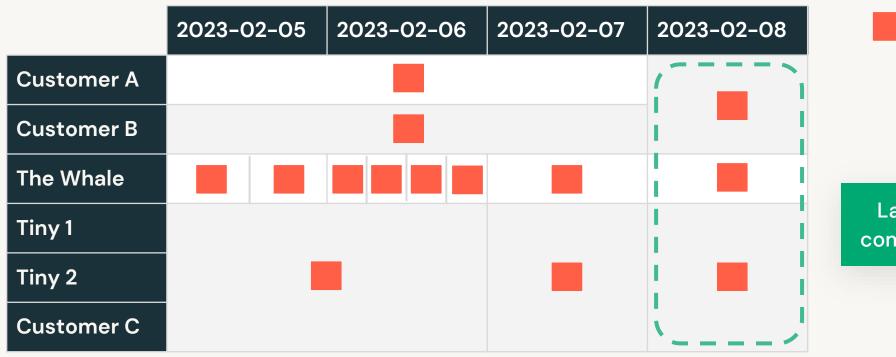
As data accumulates, start splitting out customers

Efficient ingest with lazy/partial clustering



Later, table maintenance combines the last small files

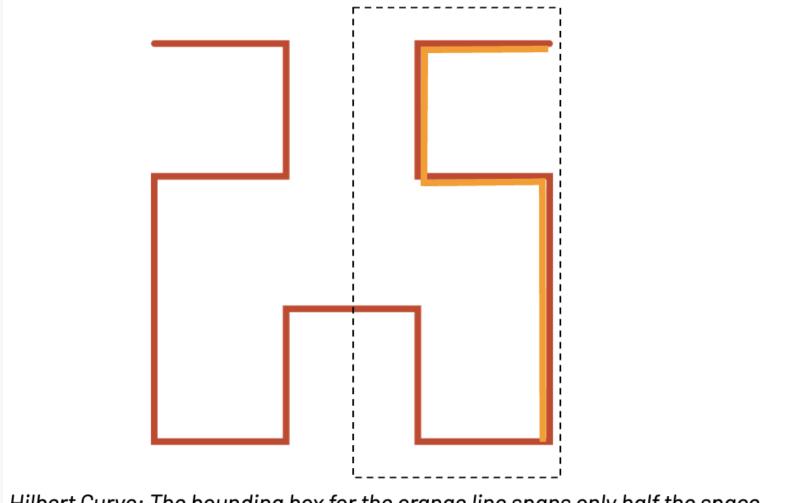
Efficient ingest with lazy/partial clustering



Later, table maintenance combines the last small files

Liquid under-the-hood

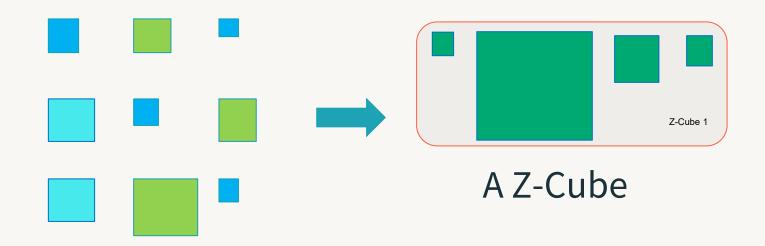
Better data-skipping due to hilbert curves



Hilbert Curve: The bounding box for the orange line spans only half the space

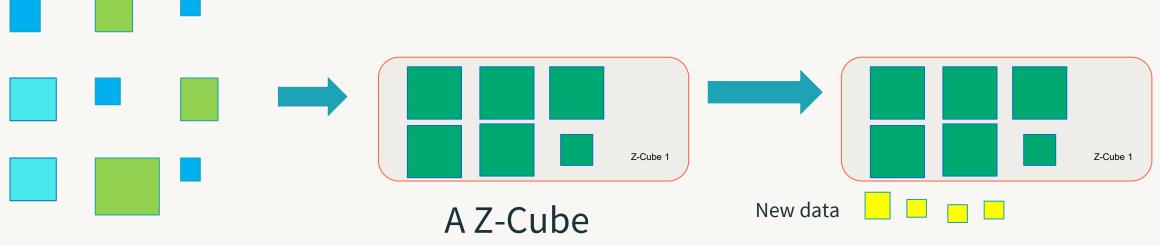
Liquid clustering is incremental

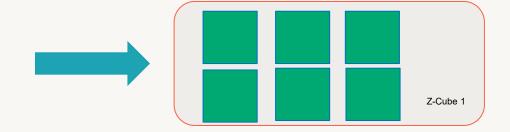
OPTIMIZE my_table



Liquid clustering is incremental

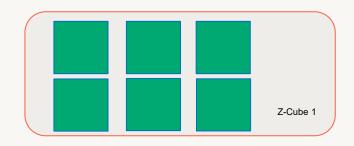
OPTIMIZE my_table

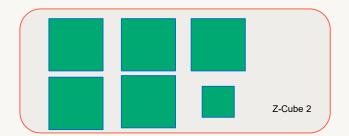




Incorporate new data into existing Z-cubes if cubes < 150 GB

Tables can have many ZCubes





- When we get to 150gb, we start a new ZCube to minimize write amplification on Zorder
- When data is removed from ZCube, possibly due to DML, once the ZCube reaches a threshold its eligible for more data to be added to it

POP QUIZ

UniForm

Choosing a data lake format?

Delta Lake

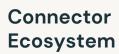
Metadata

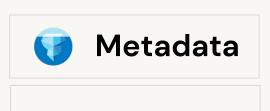
Used for transactional source of truth, concurrency control, etc.

Data

All formats use Parquet!







Parquet

Delta UniForm

Write Delta, read as Iceberg

Delta Lake With UniForm

Metadata

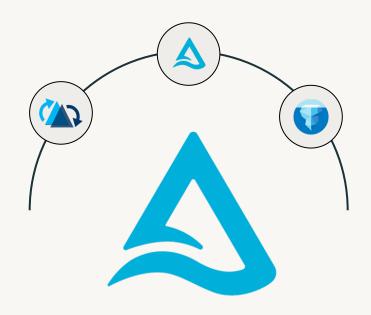
Used for transactional source of truth, concurrency control, etc.

Data

All formats use Parquet!

Connector Ecosystem

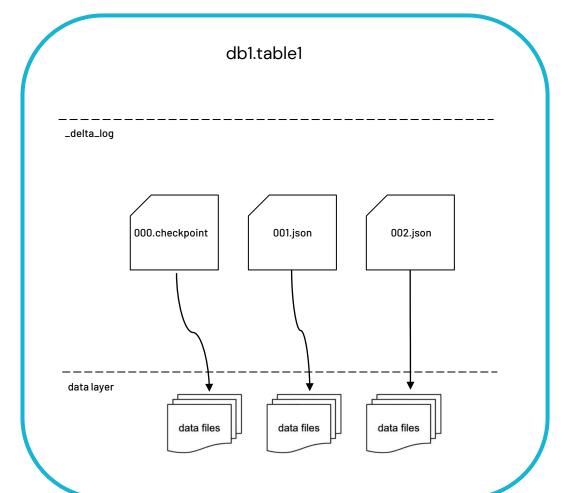
How Delta Lake UniForm works

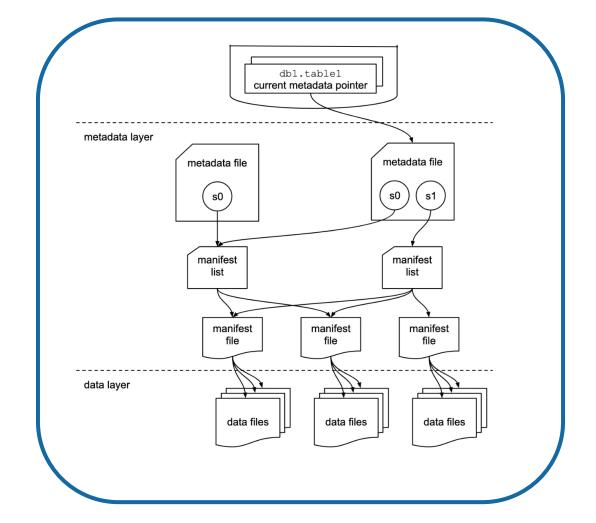


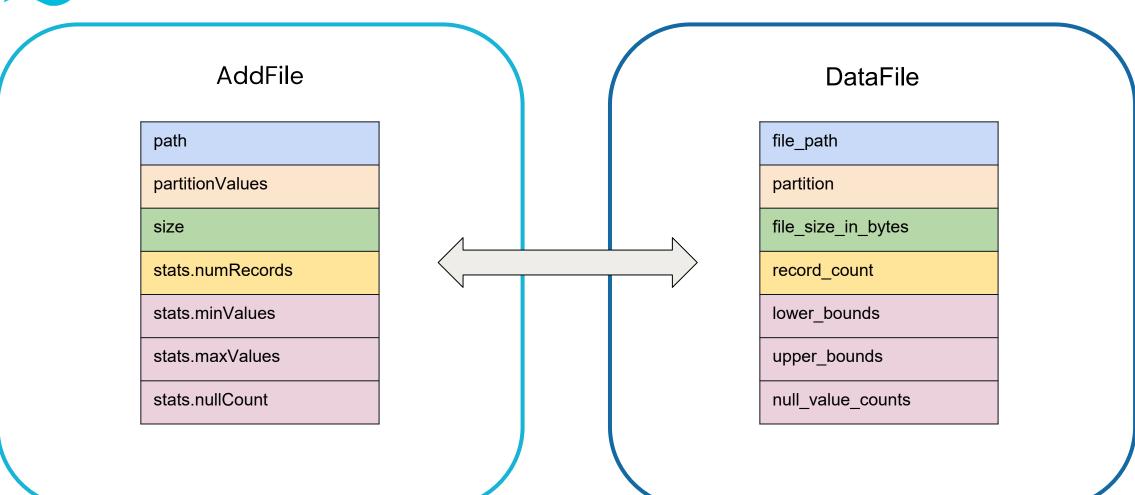
Delta Lake UniForm

Data stored in Delta can be read as if it were Iceberg or Hudi

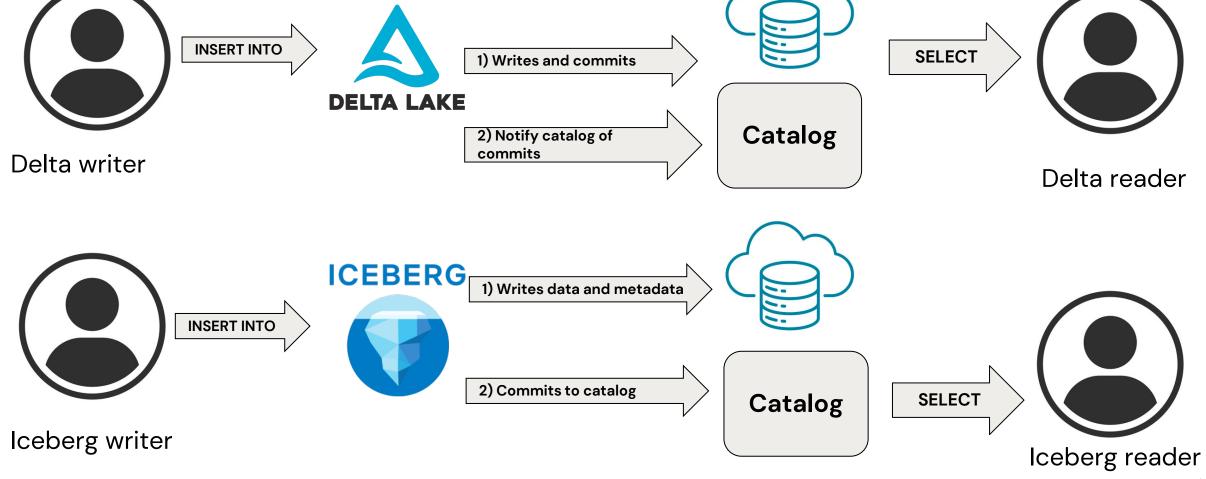
- ✓ Metadata automatically generated to make Delta accessible as Iceberg/Hudi
- ✓ Parquet files remain the same
- √ Metadata is co-located with data



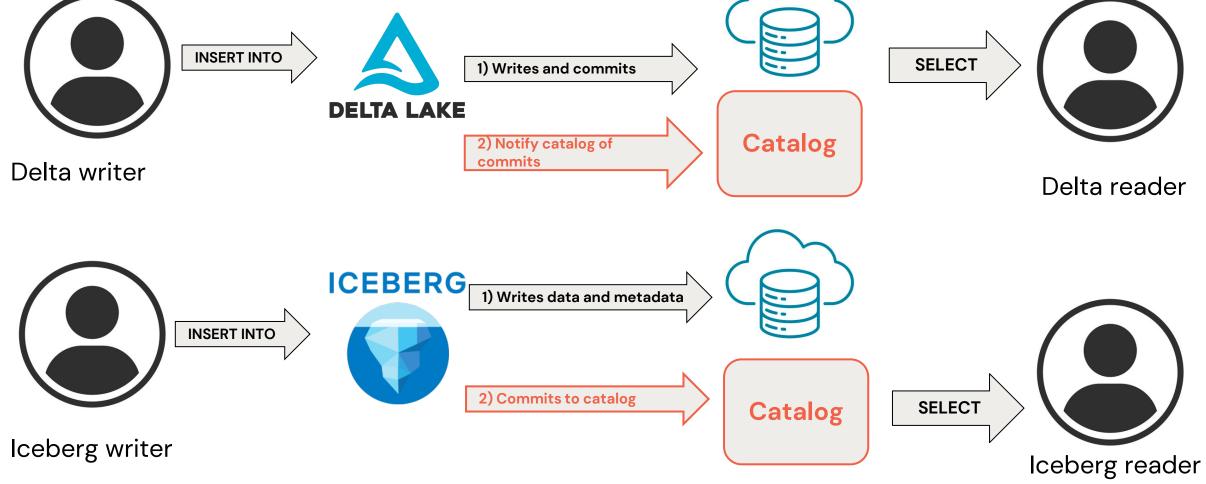




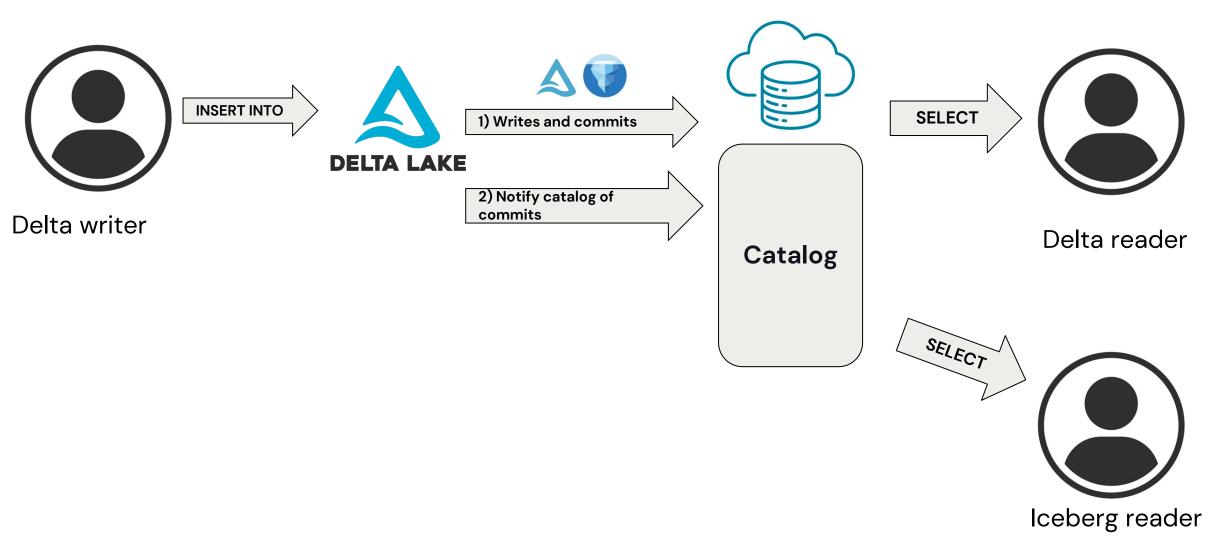
Observation: Very similar writes on both sides



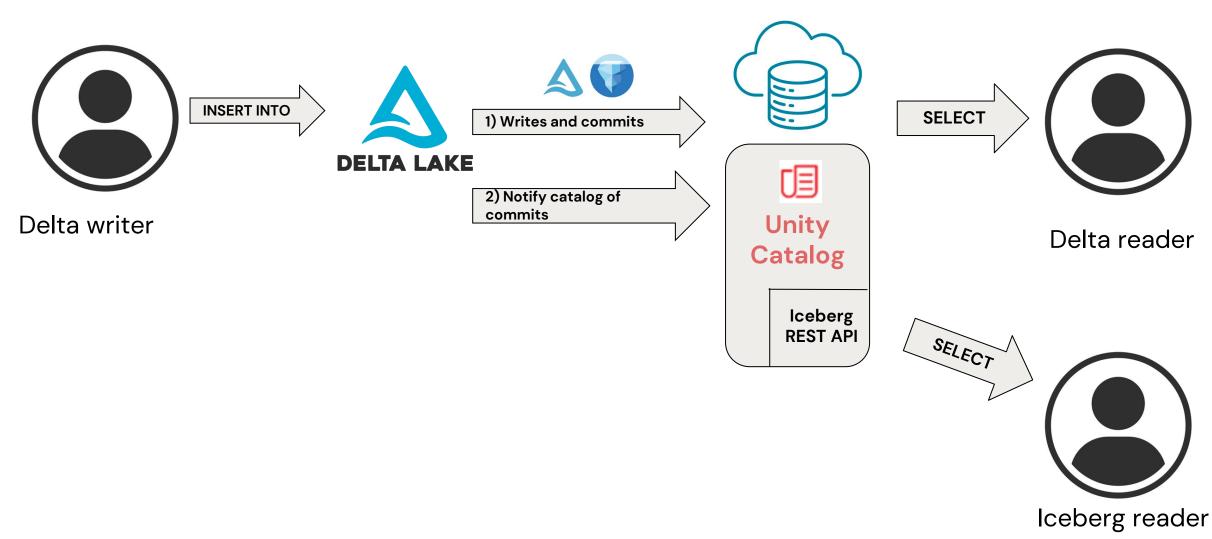
Observation: Very similar writes on both sides



UniForm concept unifies the write path



UniForm as implemented by Databricks



v0

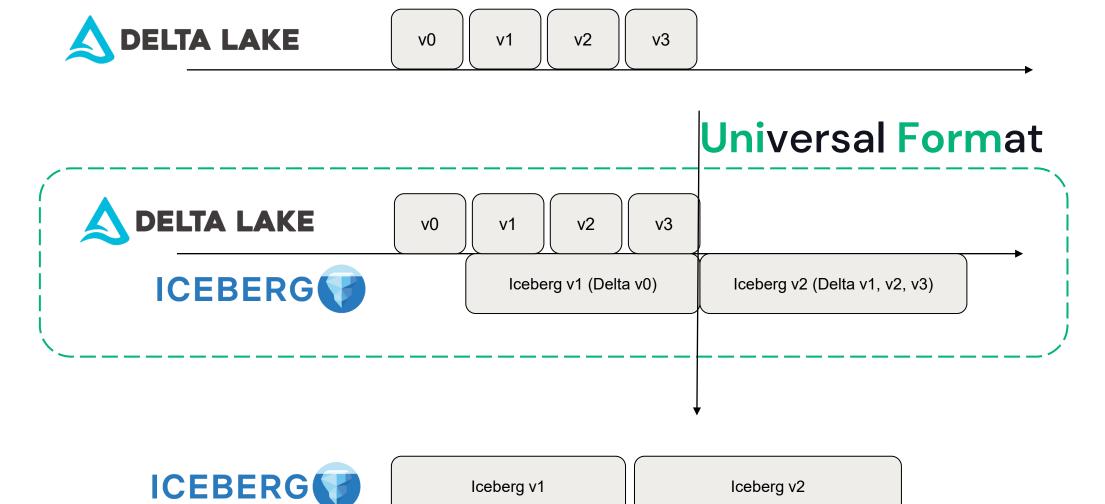
٧

v2

v3

Iceberg v1

Iceberg v2



POP QUIZ

Use Cases

Retail

Use cases

Advertising effectiveness, customer segmentation, product matching, recommendation engines

Challenge

Leverage data across their business lines to impact sales, purchasing, supply chain, and product optimization

"Our legacy systems could take weeks to ETL data for analytics and reporting. As a result, we were unable to support a variety of use cases, impacting analyst and line-of-business satisfaction."

Lara Minor

Senior enterprise data manager

Retail

Use cases

Advertising effectiveness, customer segmentation, product matching, recommendation engines

Solution

- With Databricks, build high-performance ETL pipelines that support batch and realtime workloads.
- The pipelines feed into Delta Lake which provides secure access to curated data

"Delta Lake provides ACID capabilities that simplify data pipeline operations to increase pipeline reliability and data consistency. At the same time, features like caching and auto-indexing enable efficient and performant access to the data."

Lara Minor

Senior enterprise data manager

Industry: Retail

Use cases

Advertising effectiveness, customer segmentation, product matching, recommendation engines

Outcome

70% reduction in ETL pipeline creation time

48x improvement in time to process ETL workloads (4 hours to 5 minutes)

"One of the benefits of this platform is how fast people can come up to speed on it. All that data is coming in, and more business units are using it across the enterprise in a self-service manner that was not possible before."

Lara Minor

Senior enterprise data manager

Manufacturing and Logistics

Use casesDemand forecasting

Challenge

Creating the most efficient transportation network in North America

- Unlock value of data stuck in legacy DW systems
- Massive data volumes from data streams from loT sensors
- Legacy systems struggled to scale
- This made telemetry-based use cases leveraging machine learning (ML) and AI nearly impossible.

Manufacturing and Logistics

Use cases

Demand forecasting

Solution

Create an open, interoperable and rapid data lakehouse.

- Delta Lake as the open storage layer brought efficiency and portability at TB-scale
- Stream data real-time to Delta Lake high performance and reliability at any scale
- Single copy of data for easier analysis and reproducibility
- Build ML models atop single source of truth data

Manufacturing and Logistics

Use cases

Demand forecasting

Outcome

99.8% Faster freight recommendations

\$2.7M in IT infrastructure savings

Replicating application data to the Lakehouse

Current Challenges

Identifying Changes

Updates in ETL struggle to find changes in the data from version to version in large tables

Without information regarding the specific changes to be made, all data must be compared

Current Challenges

Identifying Changes

Updates in ETL struggle to find changes in the data from version to version in large tables

Without information regarding the specific changes to be made, all data must be compared

Updating BI & Analytics Data

Real-time updates to BI and analytics require additional processing as changes arrive

Recalculating full datasets causes downtime to users incompatible with real-time needs

Current Challenges

Identifying Changes

Updates in ETL struggle to find changes in the data from version to version in large tables

Without information regarding the specific changes to be made, all data must be compared

Updating BI & Analytics Data

Real-time updates to BI and analytics require additional processing as changes arrive

Recalculating full datasets causes downtime to users incompatible with real-time needs

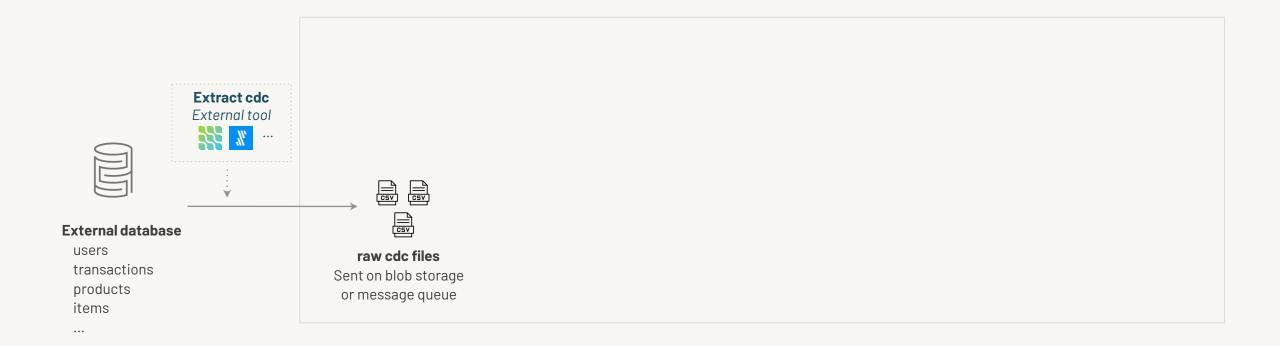
Producing an Audit Trail

Audits of records, en masse or individually, demand the ability to readily construct data as it was at any or every point in time

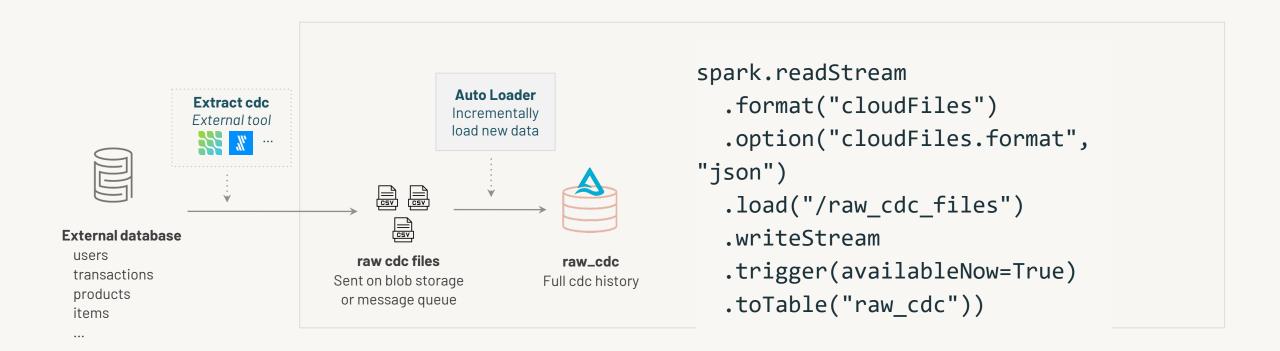
Digging through all versions is impractical yet required to meet compliance requirements

Centralizing all your data shouldn't be hard

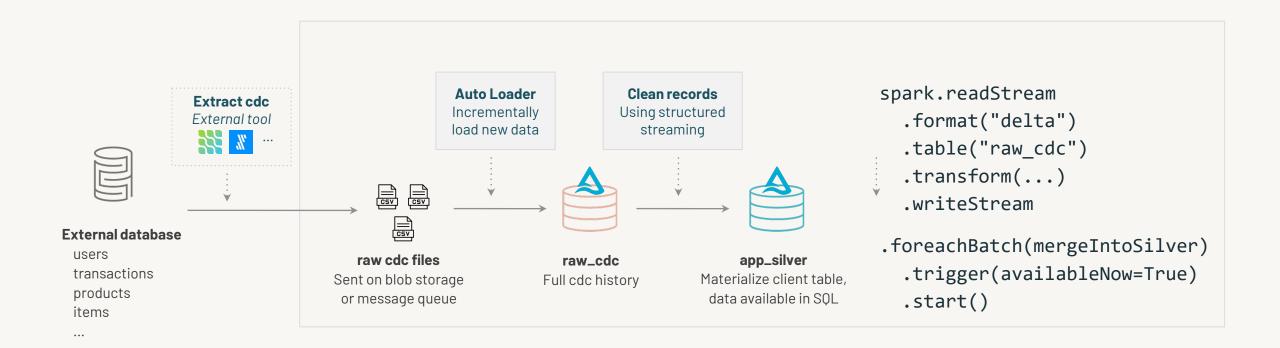
One of the most common use cases



Use autoloader to incrementally ingest your raw data into Delta Lake

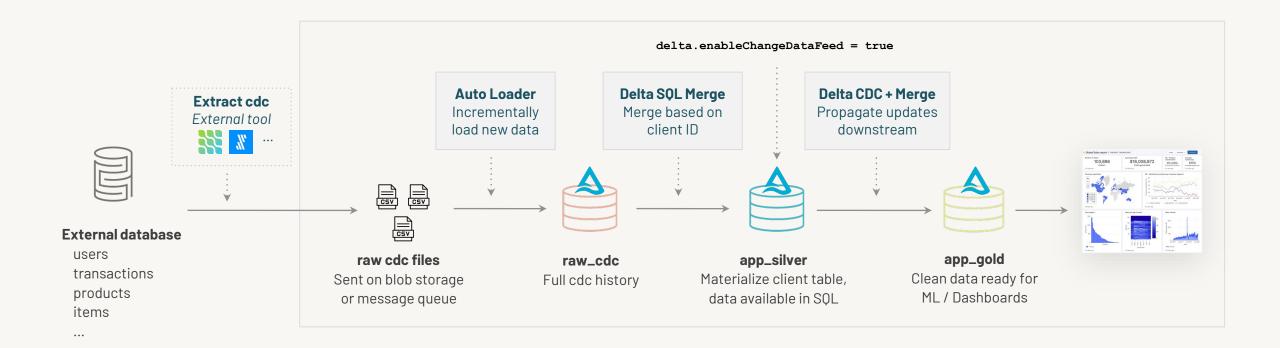


Use Structured Streaming to incrementally clean records from bronze to silver



MERGE into Gold Table

One of the most common use cases



Developing AI/ML models with Delta Lake

Reproducibility for AI/ML development

Good ML starts with high-quality data.

Model reproducibility starts with data reproducibility

Many factors affect the outcome of a model

- Adding new data sets
- Data distribution
- Sample changes

Delta Lake makes model reproducibility easy

Use cases: model retraining, comparison of different model versions, debugging

Dataset versioning

Automatic versioning for every change (insert, delete, update)

Change tracking

Maintain a detailed log of all data modifications, facilitates audits and lineage

Full history and rollback

Rollback to previous versions of the dataset as needed

Step 1: Initial model training

```
# Initialize Spark session
spark = SparkSession.builder.appName("DeltaLakeExample").getOrCreate()

# Load version 1 of the dataset
df_v1 = spark.read.format("delta").option("versionAsOf", 1).load("/path/to/delta-table")

# Preprocess data
assembler = VectorAssembler(inputCols=["feature1", "feature2"], outputCol="features")
data_v1 = assembler.transform(df_v1)

# Train initial model
lr = LinearRegression(featuresCol="features", labelCol="label")
model_v1 = lr.fit(data_v1)

# Save the model
model_v1.save("/path/to/save/model_v1")
```


Step 2: Adding new data

```
# Load new data
new_data = spark.read.format("csv").option("header", "true").load("/path/to/new-data.csv")
# Merge new data into the Delta table
new data.write.format("delta").mode("append").save("/path/to/delta-table")
```


Step 3: Retraining the model

```
# Load version 2 of the dataset
df_v2 = spark.read.format("delta").option("versionAsOf", 2).load("/path/to/delta-table")
# Preprocess data
data_v2 = assembler.transform(df_v2)
# Retrain model
model_v2 = lr.fit(data_v2)
# Save the new model
model_v2.save("/path/to/save/model_v2")
# Compare model performance
predictions_v1 = model_v1.transform(data_v2)
predictions_v2 = model_v2.transform(data_v2)
```


Step 3: Retraining the model

```
# Load version 2 of the dataset
df_v2 = spark.read.format("delta").option("versionAsOf", 2).load("/path/to/delta-table")
# Preprocess data
data_v2 = assembler.transform(df_v2)
# Retrain model
model_v2 = lr.fit(data_v2)
# Save the new model
model_v2.save("/path/to/save/model_v2")
# Compare model performance
predictions_v1 = model_v1.transform(data_v2)
predictions_v2 = model_v2.transform(data_v2)
```


Step 4: Rollback and debugging

```
# Rollback to version 1 of the dataset
df_rollback = spark.read.format("delta").option("versionAsOf", 1).load("/path/to/delta-table")
# Compare version 1 and version 2 data
df_v2 = spark.read.format("delta").option("versionAsOf", 2).load("/path/to/delta-table")
df_rollback.show()
df_v2.show()
```


Step 4: Rollback and debugging

```
# Rollback to version 1 of the dataset
df_rollback = spark.read.format("delta").option("versionAsOf", 1).load("/path/to/delta-table")
# Compare version 1 and version 2 data
df_v2 = spark.read.format("delta").option("versionAsOf", 2).load("/path/to/delta-table")
df_rollback.show()
df_v2.show()
```

Rollback and history() make it easy to trace the lineage of all changes to the underlying data, ensuring that your model can be reproduced with exactly the same data it was built on.

- Simplified user experience
- Data integrity and reliability
- Seamless interoperability

- Simplified user experience
- Data integrity and reliability
- Seamless interoperability

Convert partitioned tables to Liquid without rewrite
Upgrade tables in-place to Liquid

Convert partitioned tables to Liquid without rewrite
Upgrade tables in-place to Liquid

Identity columns

Easy button for primary and foreign keys

Convert partitioned tables to Liquid without rewrite

Upgrade tables in-place to Liquid

Identity columns

Easy button for primary and foreign keys

Type widening

Seamless, no-copy updates to wider data types (e.g., INT > LONG)

Convert partitioned tables to Liquid without rewrite

Upgrade tables in-place to Liquid

Identity columns

Easy button for primary and foreign keys

Type widening

Seamless, no-copy updates to wider data types (e.g., INT > LONG)

VARIANT data type

Highly flexible, highly performant data type for semi-structured data

- Simplified user experience
- Data integrity and reliability
- Seamless interoperability

Coordinated Commits

Multi-cluster, multi-cloud writes

Coordinated Commits

Multi-cluster, multi-cloud writes

Built-in cross-region disaster recovery

Ensure writes are accurately reflected in secondary region

Coordinated Commits

Multi-cluster, multi-cloud writes

Built-in cross-region disaster recovery

Ensure writes are accurately reflected in secondary region

Collations

Custom sorting and comparison rules

Coordinated Commits

Multi-cluster, multi-cloud writes

Built-in cross-region disaster recovery

Ensure writes are accurately reflected in secondary region

Collations

Custom sorting and comparison rules

Spark Connect support

Improved debuggability, upgradability and reliability

Coordinated Commits

Multi-cluster, multi-cloud writes

Built-in cross-region disaster recovery

Ensure writes are accurately reflected in secondary region

Collations

Custom sorting and comparison rules

Spark Connect support

Improved debuggability, upgradability and reliability

Multi-statement and Multi-table transactions

Atomic transactions across tables

- Simplified user experience
- Data integrity and reliability

Seamless interoperability

Seamless interoperability

Delta Kernel

Integrate your client once, get the latest Delta innovations forever.

Seamless interoperability

Delta Kernel

Integrate your client once, get the latest Delta innovations forever.

Expanding connector ecosystem

Collaborating with community and partners to build connectors with Kernel

Seamless interoperability

Delta Kernel

Integrate your client once, get the latest Delta innovations forever.

Expanding connector ecosystem

Collaborating with community and partners to build connectors with Kernel

Delta UniForm

Improved interoperability with latest Delta capabilities - e.g., Deletion Vectors

POP QUIZ

Learn more at the summit!

Databricks Events App

Tells us what you think

- We kindly request your valuable feedback on this session.
- Please take a moment to rate and share your thoughts about it.
- You can conveniently provide your feedback and rating through the Mobile App.

What to do next?

- Discover more related sessions in the mobile app!
- Visit the Demo Booth: Experience innovation firsthand!
- More Activities: Engage and connect further at the Databricks Zone!

Get trained and certified

- Visit the Learning Hub Experience at Moscone West, 2nd Floor!
- Take complimentary certification at the event; come by the Certified Lounge
- Visit our Databricks Learning website for more training, courses and workshops!

databricks.com/learn

databricks

